miercuri, 29 aprilie 2009

Prezentare masini cu Sunet

Read More......

Frumoasa masina

Read More......

marți, 21 aprilie 2009

Cum sa-ti faci fresa cu 30 000 de wati in masina

Read More......

30,000 watt Escalade 20,000 watt Tahoe Tremendous Bass 24

Read More......

Surzii incep sa auda :)

Read More......

Cand sunteti suparat pe soacra :))

Read More......

joi, 16 aprilie 2009

Schema Amplificator MosFet - 25W

Circuit diagram:

25 Watt Amplifier

Parts:

R1,R4 = 47K

1/4W Resistors

R2 = 4K7 1/4W Resistors
R3 = 1K5 1/4W Resistors
R5 = 390R 1/4W Resistors
R6 = 470R 1/4W Resistors
R7 = 33K 1/4W Resistors
R8 = 150K 1/4W Resistors
R9 = 15K 1/4W Resistors
R10 = 27R 1/4W Resistors
R11 = 500R

1/2W Trimmer Cermet

R12,R13,R16 = 10R 1/4W Resistors
R14,R15 = 220R 1/4W Resistors
R17 = 8R2 2W Resistor
R18 = R22 4W Resistor (wirewound)
C1 = 470nF 63V Polyester Capacitor
C2 = 330pF 63V Polystyrene Capacitor
C3,C5 = 470΅F 63V Electrolytic Capacitors
C4,C6,C8,C11 = 100nF 63V Polyester Capacitors
C7 = 100΅F 25V Electrolytic Capacitor
C9 = 10pF 63V Polystyrene Capacitor
C10 = 1΅F 63V Polyester Capacitor
Q1-Q5 = BC560C 45V100mA Low noise High gain PNP Transistors
Q6 = BD140 80V 1.5A PNP Transistor
Q7 = BD139 80V 1.5A NPN Transistor
Q8 = IRF532 100V 12A N-Channel Hexfet Transistor
Q9 = IRF9532 100V 10A P-Channel Hexfet Transistor
 
Power supply circuit diagram:

Power supply


Parts:

R1 = 3K3 1/2W Resistor
C1 = 10nF 1000V Polyester Capacitor
C2,C3 = 4700΅F 50V Electrolytic Capacitors
C4,C5 = 100nF 63V Polyester Capacitors
D1 200V 8A Diode bridge
D2 5mm. Red LED
F1,F2 3.15A Fuses with sockets
T1 220V Primary, 25 + 25V Secondary 120VA Mains transformer
PL1 Male Mains plug
SW1 SPST Mains switch


Notes:

  • Can be directly connected to CD players, tuners and tape recorders. Simply add a 10K Log potentiometer (dual gang for stereo) and a switch to cope with the various sources you need.

  • Q6 & Q7 must have a small U-shaped heatsink.

  • Q8 & Q9 must be mounted on heatsink.

  • Adjust R11 to set quiescent current at 100mA (best measured with an Avo-meter in series with Q8 Drain) with no input signal.

  • A correct grounding is very important to eliminate hum and ground loops. Connect in the same point the ground sides of R1, R4, R9, C3 to C8. Connect C11 at output ground. Then connect separately the input and output grounds at power supply ground.


Technical data:

Output power: well in excess of 25Watt RMS @ 8 Ohm (1KHz sinewave)

Sensitivity: 200mV input for 25W output

Frequency response: 30Hz to 20KHz -1dB

Total harmonic distortion @ 1KHz: 0.1W 0.014% 1W 0.006% 10W 0.006% 20W 0.007% 25W 0.01%
Total harmonic distortion @10KHz: 0.1W 0.024% 1W 0.016% 10W 0.02% 20W 0.045% 25W 0.07%

Unconditionally stable on capacitive loads


Read More......

Amplificatorul MosFet-proprietati

MOSFET amplifier

MOSFETamplifier.gif MOSFETtransfer.gif

Assume in the circuit above V_T$" align="middle" border="0" height="35" width="132"> and the transistor is in saturation region, i.e., V_{in}-V_T$" align="middle" border="0" height="35" width="131">, then we have

\begin{displaymath}\left\{ \begin{array}{l} I_{DS}=K(V_{in}-V_T)^2 \\ V_{out}=V_{DS}=V_{dd}-I_{DS} R=V_{dd}-KR(V_{in}-V_T)^2 \end{array} \right. \end{displaymath}

The second equation relates the output $V_{out}$ to the input $V_{in}$, as shown by the red segment of the curve in the plot above. As the transistor is in saturation region,
\begin{displaymath}V_{out}=V_{dd}-KR(V_{in}-V_T)^2\ge V_{in}-V_T \end{displaymath}

which can be solved for $V_{in}$ to get:
\begin{displaymath}V_{in}<\frac{-1+\sqrt{1+4KRV_{dd}}}{2KR}+V_T \end{displaymath}

It can be seen that when the transistor is in saturation mode the slope of the curve (red) indicates the ratio between input $V_{in}$ and output $V_{out}$. And the voltage gain of the circuit is defined as:
\begin{displaymath}g=\frac{d V_{out}}{d V_{in}}=\frac{d}{d V_{in}}(V_{dd}-K(V_{in}-V_T)^2 R) =-2KR(V_{in}-V_T) \end{displaymath}

Example: Assume $V_{dd}=10V$, $R=10 k\Omega$, $K=0.5\;mA/V^2$, $V_T=1V$. For the transistor to be in saturation region, we need

  • V_T=1\;V$" align="middle" border="0" height="35" width="130">
  • $V_{in}<[-1+\sqrt{1+4KRV_{dd}}\;]/2KR+V_T=2.32\;V $
then we have
\begin{displaymath}V_{out}=V_{dd}-K(V_{in}-V_T)^2 R=10-5(V_{in}-1)^2 \end{displaymath}

and the voltage gain is a function of the input $V_{in}$:
\begin{displaymath}g(V_{in})=\frac{d}{d V_{in}} V_{out}(V_{in})=-10(V_{in}-1) \end{displaymath}

This nonlinear equation can be represented by the table below:
$V_{in}$ 0 1 1.4 1.5 1.8 1.9 2.0 2.1 2.2 2.3 2.32 2.35 2.4
$V_{out}$ 10 10 9.2 8.8 6.8 6.0 5.0 4.0 2.8 1.6 1.3 0.9 0.0
In particular, when the input $V_{in}$ increases from $1.8V$ to $1.9V$, the output $V_{out}$ decreases from $6.8V$ to $6V$, with a gain $g(V_{in})=g(1.8)=-10(1.8-1)=-8$. Also when the input $V_{in}$ increases from $2.0V$ to $2.1V$, the output $V_{out}$ decreases from $5V$ to $4V$, with a gain $g(V_{in})=g(2)=-10(2-1)=-10$.

MOSFETexample.gif

In summary, we see that

  • When the transistor is in saturation mode, the circuit behaves as a voltage amplifier.
  • The voltage gain is the slope of the tangent of the curve (red) as a function of $V_{in}$.
  • The value of the gain depends on the level of input $V_{in}$. When $V_{out}(V_{in})$ is negative.
  • When $V_{in}<V_T=1V$, the transistor is cutoff. On the other hand, when 2.32V$" align="middle" border="0" height="35" width="102">, $V_{out}$ is more than one $V_T$ below $V_{in}$, for example, $V_{in}=2.32$, $v_{in}(t)=V_{bias}+\sin(\omega t)$. If the bias voltage is $V_{bias}=1.5V$, the input voltage $v_{in}(t)$ varies between 1.4V and 1.6V. The output voltage can be found to be:

    \begin{displaymath}v_{out}=V_{dd}-RI_{DS}=V_{dd}-RK(V_{in}-V_T)^2=5-10 (V_{in}-1)^2 \end{displaymath}

    In particular, corresponding to $V_{in}=1.4V,\;1.5V,\;1.6V$, the output voltage $v_{out}$ and the current $i_{DS}$ are, respectively, $v_{out}=3.4V,\;2.5V,\;1.4V$, and $i_{DS}=0.16mA,\;0.25mA,\;0.36mA$, as shown in the figure below:

    MOSFETloadline.gif

    Biasing: In the example above, the DC offset of the input is at 1.5V, so that the transistor is working in the saturation region when the magnitude of the AC input is limited. However, if this offset is either too high or too low, the gate voltage may go beyond the saturation region to enter either the triode or the cutoff region. In either case, the output voltage will be severely distorted, as shown below:

    MOSFETregions.gif

    It is therefore clear that the DC offset or biasing gate voltage has to be properly setup to make sure the dynamic range of the input signal is within the saturation region.

    Method 1: One way to provide the desired DC offset is to use two resistors $R_1$ and $R_2$ that form a voltage divider, as shown in the figure below (a). As the input resistance of a MOSFET transistor is very high, therefore the gate of the transistor does not draw any current, the DC offset voltage can simply obtained as:

    \begin{displaymath}V_{bias}=V_{dd}\frac{R_1}{R_1+R_2} \end{displaymath}

    The input AC signal through the input capacitor is then superimposed on this DC offset.

    MOSFETbiasing.gif

    Method 2: Another way to set up the bias is the circuit shown in (b) above. Assume $R_1=84k$, $R_2=16k$, $R_d=20k$, $V_{dd}=10V$, and $K=0.5mA/V^2$. The bias voltage can be found to be $V_B=V_{bias}=1.6V$, and the voltage between gate and source is $V_{GS}=V_B-V_{in}$. The output voltage is

    \begin{displaymath}V_{out}=V_{dd}-R_d K (V_{GS}-V_T)^2=V_{dd}-R_d K (V_B-V_{in}-V_T)^2=10-10\times (0.6-V_{in})^2 \end{displaymath}

    When $V_{in}=0$, $V_{out}=6.4V$.

    To determine the dynamic range of the input $V_{in}$, recall the conditions for the transistor to be in saturation region:

    • To avoid cutoff region: $V_{GS}-V_T \ge 0$. For this particular circuit,
      \begin{displaymath}V_{GS}-V_T=V_B-V_{in}-V_T=0.6-V_{in} \ge 0 \end{displaymath}

      Solving this we get $V_{in} \le 0.6V$ with corresponding output $V_{out} < 10V$.

    • To avoid triode region: $V_{DS} \ge V_{GS}-V_T$. For this particular circuit,
      \begin{displaymath}V_{DS}=V_{out}-V_{in}=(V_{dd}-R_dI_{DS})-V_{in} =V_{dd}-R_dK (V_B-V_{in}-V_T)^2-V_{in} \ge V_B-V_{in}-V_T \end{displaymath}

      that is
      \begin{displaymath}V_{out}=V_{dd}-R_dK (V_B-V_{in}-V_T)^2 \ge V_B-V_T \end{displaymath}

      i.e.,
      \begin{displaymath}V_{out}=10-10\times (0.6-V_{in})^2 \ge 0.6 \end{displaymath}

      Solving this for $V_{in}$ we get $V_{in} \ge -0.37V $, with corresponding output $V_{out} \ge 0.6V$
    Therefore the overall dynamic range for the input is
    \begin{displaymath}-0.37V \le V_{in} \le 0.6V \end{displaymath}

    with the corresponding output range
    \begin{displaymath}0.6V \le V_{out} \le 10V \end{displaymath}

    and the overall voltage gain is about $g=9.7$. Note that the output voltage is in phase with the input voltage.

    Source Follower: If the output is taken from the source, instead of the drain of the transistor, the circuit is called a source follower.

    MOSFETfollower.gif

    Assume $R_S=10 k\Omega$, $V_T=1V$ and $K=10 mA/V^2$. To find the input and output voltages and the gain of the circuit, consider the current $I_{DS}=V_{out}/R_S$:


    \begin{displaymath}I_{DS}=K(V_{GS}-V_T)^2=K(V_{in}-V_{out}-V_T)^2=V_{out}/R_S \end{displaymath}

    Plugging in the given values, we get
    \begin{displaymath}(V_{in}-V_{out}-1)^2=V_{out} \end{displaymath}

    If $V_{in}=2V$, this equation becomes:
    \begin{displaymath}(V_{out}-1)^2=V_{out} \end{displaymath}

    which can be solved to get $V_{out}=2.6V$ or $V_{out}=0.4V$. We take the smaller voltage in order for the transistor to be outside the cutoff region:
    V_T=1 \end{displaymath}" border="0" height="31" width="303">

    Similarly, if $V_{in}=3V$, the equation becomes:
    \begin{displaymath}(V_{out}-2)^2=V_{out} \end{displaymath}

    and we get $V_{out}=1V$. The voltage gain of the source follower is
    \begin{displaymath}g=\frac{\Delta V_{out}}{\Delta V_{in}}=\frac{1-0.4}{3-2}=0.6<1 \end{displaymath}



Read More......

Publicitate